Fashion Style Generator
نویسندگان
چکیده
In this paper, we focus on a new problem: applying artificial intelligence to automatically generate fashion style images. Given a basic clothing image and a fashion style image (e.g., leopard print), we generate a clothing image with the certain style in real time with a neural fashion style generator. Fashion style generation is related to recent artistic style transfer works, but has its own challenges. The synthetic image should preserve the similar design as the basic clothing, and meanwhile blend the new style pattern on the clothing. Neither existing global nor patch based neural style transfer methods could well solve these challenges. In this paper, we propose an end-to-end feed-forward neural network which consists of a fashion style generator and a discriminator. The global and patch based style and content losses calculated by the discriminator alternatively back-propagate the generator network and optimize it. The global optimization stage preserves the clothing form and design and the local optimization stage preserves the detailed style pattern. Extensive experiments show that our method outperforms the state-of-the-arts.
منابع مشابه
An Automatic Method for Building a Data-to-Text Generator
We describe our contribution to the Generating from Knowledge Bases (KBgen) challenge. Our system is learned in a bottom-up fashion, by inducing a probabilistic grammar that represents alignments between strings and parts of a knowledge graph. From these alignments, we extract information about the linearization and lexical choices associated with the target knowledge base, and build a simple g...
متن کاملClothing Style Recognition using Fashion Attribute Detection
In this paper, a new framework is proposed for clothing style recognition in natural scenes. Clothing region is first detected through the fusion of super-pixel segmentation, saliency detection and Gaussian Mixture Model (GMM). Next, a group of fashion attribute detectors are trained to get the likelihood of each attribute in the clothing image. Finally, the correlation matrix between clothing ...
متن کاملStyle2Vec: Representation Learning for Fashion Items from Style Sets
With the rapid growth of online fashion market, demand for effective fashion recommendation systems has never been greater. In fashion recommendation, the ability to find items that goes well with a few other items based on style is more important than picking a single item based on the user’s entire purchase history. Since the same user may have purchased dress suits in one month and casual de...
متن کاملLearning the Latent "Look": Unsupervised Discovery of a Style-Coherent Embedding from Fashion Images
What defines a visual style? Fashion styles emerge organically from how people assemble outfits of clothing, making them difficult to pin down with a computational model. Low-level visual similarity can be too specific to detect stylistically similar images, while manually crafted style categories can be too abstract to capture subtle style differences. We propose an unsupervised approach to le...
متن کاملContext-conditional Generative Adversarial Networks
We introduce a simple semi-supervised learning approach for images based on in-painting using an adversarial loss. Images with random patches removed are presented to a generator whose task is to fill in the hole, based on the surrounding pixels. The in-painted images are then presented to a discriminator network that judges if they are real (unaltered training images) or not. This task acts as...
متن کامل